今天是2024年11月22日 第47周 星期五
代人,时大变了。
我们生活在大地上,但我们的梦想超越天空。
高等數學
緒論 微積分的背景
微積分有一段漫長的歷史。儘管大家都認為微積分是由牛頓和萊布尼茲各自獨立發明的,但早在此之前,無窮分析的思想就已有了萌芽。
0.1 芝諾悖論與窮竭法
約公元前450年,巴門尼德(Parmenides)的門徒埃利亞人芝諾提出了四個悖論,經亞里士多德記錄下來,分別稱為阿喀琉斯(Achilles)悖論、飛矢不動悖論、二分法悖論和遊行隊伍悖論。這四個悖論造成的震盪,餘波至今未息。
阿喀琉斯悖論 阿喀琉斯和烏龜沿直線向相同方向運動,阿喀琉斯比烏龜快得多,但要趕上烏龜,他必須先經過烏龜的起點P.等他到達P,烏龜已經走到P1,阿喀琉斯要追上烏龜先要經過P1,但此時烏龜已經走到新點P2.等他到達P2,烏龜又走到P3,等等,所以阿喀琉斯永遠也追不上烏龜.
二分法悖論 假設我想沿直線從A到B,在到達B之前先要走過AB距離的一半AB1,而要到達B1,又先要到達AB1的中點B2,如此下去無窮無盡,運動永遠無法開始.
0.2 牛頓與萊布尼茲之爭
17世紀,牛頓在《自然哲學的數學原理》中初步描述了他的流數理論。同一時期,萊布尼茲通過研究笛卡爾和帕斯卡,發現了他的新微積分。
0.3 第二次數學危機與柯西的解決方案
0.4 黎曼積分與勒貝格積分
0.5 計算方法與混沌系統
第一章 導數
1.1 極限基礎
1.2 導數定義及運算法則
導數(英語:derivative)是微積分學中的一個概念。函數在某一點的導數是指這個函數在這一點附近的變化率。