今天是2024年6月26日 第26周 星期三

代人,时大变了。

我们生活在大地上,但我们的梦想超越天空。

「高等数学」修訂間的差異

出自Akarin
跳至導覽 跳至搜尋
標籤手機版網頁編輯 手機版編輯
 
(未顯示由 2 位使用者於中間所作的 7 次修訂)
行 1: 行 1:
 
== 绪论 微积分的背景 ==
 
== 绪论 微积分的背景 ==
  
 微积分有一段漫长的历史。尽管大家都认为微积分是由牛顿和莱布尼兹各自独立发明的,但早在此之前,无穷分析的思想就已有了萌芽。
+
 微积分有一段漫长的历史<ref name="mathHis">D.J.斯特罗伊克.数学简史(第四版)[M].胡滨 译.北京:高等教育出版社,2018</ref> 。尽管大家都认为微积分是由牛顿和莱布尼兹各自独立发明的,但早在此之前,无穷分析的思想就已有了萌芽。
  
 
=== 0.1 芝诺悖论与穷竭法 ===
 
=== 0.1 芝诺悖论与穷竭法 ===
 
 约公元前450年,巴门尼德(Parmenides)的门徒埃利亚人芝诺提出了四个悖论,经亚里士多德记录下来,分别称为阿喀琉斯(Achilles)悖论、飞矢不动悖论、二分法悖论和游行队伍悖论。这四个悖论造成的震荡,余波至今未息。
 
 约公元前450年,巴门尼德(Parmenides)的门徒埃利亚人芝诺提出了四个悖论,经亚里士多德记录下来,分别称为阿喀琉斯(Achilles)悖论、飞矢不动悖论、二分法悖论和游行队伍悖论。这四个悖论造成的震荡,余波至今未息。
 +
 +
{{Quote|'''阿喀琉斯悖论'''
 +
 +
阿喀琉斯和乌龟沿直线向相同方向运动,阿喀琉斯比乌龟快得多,但要赶上乌龟,他必须先经过乌龟的起点P.等他到达P,乌龟已经走到P<sub>1</sub>,阿喀琉斯要追上乌龟先要经过P<sub>1</sub>,但此时乌龟已经走到新点P<sub>2</sub>.等他到达P<sub>2</sub>,乌龟又走到P<sub>3</sub>,等等,所以阿喀琉斯永远也追不上乌龟.
 +
 +
'''二分法悖论'''
 +
 +
假设我想沿直线从A到B,在到达B之前先要走过AB距离的一半AB<sub>1</sub>,而要到达B<sub>1</sub>,又先要到达AB<sub>1</sub>的中点B<sub>2</sub>,如此下去无穷无尽,运动永远无法开始.}}
 +
 +
芝诺的论证表明,一条有限线段可以分为无穷多条有限长的小线段,论证还表明,解释所谓直线由点“构成”具有困难。很有可能芝诺本人也不了解他的论证的数学含义,在哲学和数学讨论中不断出现最终变成他的悖论的问题,我们将其看作是关于“潜”无穷和“实”无穷关系的问题。然而塔内里却相信芝诺的论证特别针对的是毕达哥拉斯学派空间是点之和的观点(“点就是位置的单元”).无论事实如何,芝诺的论证确实影响了多少代人的数学思想,他的悖论可以和伯克莱主教(Bishop Berkeley)1734年使用的悖论相媲美,伯克莱主教当时表明了微积分原理构成欠缺引出的逻辑悖论,但没有提出更好的根据.
 +
 +
发现无理数之后,芝诺的论证更使数学家担忧.数学作为一门准确的科学是否可能?<ref name="mathHis" />{{rp|54-55}}
 +
 +
“穷竭法”(exhaustion method,“exhaust”一词首见于圣樊尚(Gregoire de Saint-Vincent),1647年)是柏拉图学派对芝诺的回答,通过舍去无穷小量并将可能导致无穷小的问题简化为只涉及形式逻辑的问题,避免了无穷小陷阱. 例如,当需要证明一个四面体的体积V等于一同底等高的棱柱体的体积P的三分之一时,证明包括表明两个假设V>1/3P和V<1/3P都不能成立. 为此引进一条与阿基米德(或欧多克索斯)公理等价的公理,阿基米德将这个公理阐述如下:对于两个不相等的量,“将大量超过小量的量加到该量本身上面,就会超过可与这两个量相比的任意指定的量”. 这里“加到该量本身上面”可以重复任意次. 在我们四面体的情况下,推理就是:假设V=A,证明A>1/3P是矛盾的. 将四面体置于n个棱柱组成的外切阶梯四面体之内,每个棱柱高h/n,h是四面体的高,可见当n取足够大时,阶梯四面体的体积就会小于A,因为它的体积一定大于V,我们就得到矛盾. 用类似的方法,我们用内接阶梯四面体可以证明V<1/3P不能成立. 欧几里得用这个方法证明了几个命题,其中有“两圆面积之比等于直径之比的平方”的定理.
 +
 +
这个间接方法非常严格,称为希腊和文艺复兴时代计算面积和体积标准的严格证明模式,而且还可以很容易地翻译成满足现代分析所要求的证明. 它的一大缺陷是事先要已知需要证明的结果,数学家必须先用其他不太严格和更优实验性的方法把结果求出来.<ref name="mathHis" />{{rp|58-59}}
  
 
=== 0.2 牛顿与莱布尼兹之争 ===
 
=== 0.2 牛顿与莱布尼兹之争 ===
行 65: 行 81:
  
 
== 第十章 无穷级数 ==
 
== 第十章 无穷级数 ==
 +
 +
== 参见 ==
 +
*[[导数列表]]
 +
*[[积分列表]]
 +
 +
== 参考文献 ==
 +
<references></references>

於 2023年12月25日 (一) 01:53 的最新修訂

緒論 微積分的背景

微積分有一段漫長的歷史[1]。儘管大家都認為微積分是由牛頓和萊布尼茲各自獨立發明的,但早在此之前,無窮分析的思想就已有了萌芽。

0.1 芝諾悖論與窮竭法

約公元前450年,巴門尼德(Parmenides)的門徒埃利亞人芝諾提出了四個悖論,經亞里士多德記錄下來,分別稱為阿喀琉斯(Achilles)悖論、飛矢不動悖論、二分法悖論和遊行隊伍悖論。這四個悖論造成的震盪,餘波至今未息。

阿喀琉斯悖論

阿喀琉斯和烏龜沿直線向相同方向運動,阿喀琉斯比烏龜快得多,但要趕上烏龜,他必須先經過烏龜的起點P.等他到達P,烏龜已經走到P1,阿喀琉斯要追上烏龜先要經過P1,但此時烏龜已經走到新點P2.等他到達P2,烏龜又走到P3,等等,所以阿喀琉斯永遠也追不上烏龜.

二分法悖論

假設我想沿直線從A到B,在到達B之前先要走過AB距離的一半AB1,而要到達B1,又先要到達AB1的中點B2,如此下去無窮無盡,運動永遠無法開始.

芝諾的論證表明,一條有限線段可以分為無窮多條有限長的小線段,論證還表明,解釋所謂直線由點「構成」具有困難。很有可能芝諾本人也不了解他的論證的數學含義,在哲學和數學討論中不斷出現最終變成他的悖論的問題,我們將其看作是關於「潛」無窮和「實」無窮關係的問題。然而塔內里卻相信芝諾的論證特別針對的是畢達哥拉斯學派空間是點之和的觀點(「點就是位置的單元」).無論事實如何,芝諾的論證確實影響了多少代人的數學思想,他的悖論可以和伯克萊主教(Bishop Berkeley)1734年使用的悖論相媲美,伯克萊主教當時表明了微積分原理構成欠缺引出的邏輯悖論,但沒有提出更好的根據.

發現無理數之後,芝諾的論證更使數學家擔憂.數學作為一門準確的科學是否可能?[1]Template:Rp

「窮竭法」(exhaustion method,「exhaust」一詞首見於聖樊尚(Gregoire de Saint-Vincent),1647年)是柏拉圖學派對芝諾的回答,通過捨去無窮小量並將可能導致無窮小的問題簡化為只涉及形式邏輯的問題,避免了無窮小陷阱. 例如,當需要證明一個四面體的體積V等於一同底等高的稜柱體的體積P的三分之一時,證明包括表明兩個假設V>1/3P和V<1/3P都不能成立. 為此引進一條與阿基米德(或歐多克索斯)公理等價的公理,阿基米德將這個公理闡述如下:對於兩個不相等的量,「將大量超過小量的量加到該量本身上面,就會超過可與這兩個量相比的任意指定的量」. 這裡「加到該量本身上面」可以重複任意次. 在我們四面體的情況下,推理就是:假設V=A,證明A>1/3P是矛盾的. 將四面體置於n個稜柱組成的外切階梯四面體之內,每個稜柱高h/n,h是四面體的高,可見當n取足夠大時,階梯四面體的體積就會小於A,因為它的體積一定大於V,我們就得到矛盾. 用類似的方法,我們用內接階梯四面體可以證明V<1/3P不能成立. 歐幾里得用這個方法證明了幾個命題,其中有「兩圓面積之比等於直徑之比的平方」的定理.

這個間接方法非常嚴格,稱為希臘和文藝復興時代計算面積和體積標準的嚴格證明模式,而且還可以很容易地翻譯成滿足現代分析所要求的證明. 它的一大缺陷是事先要已知需要證明的結果,數學家必須先用其他不太嚴格和更優實驗性的方法把結果求出來.[1]Template:Rp

0.2 牛頓與萊布尼茲之爭

17世紀,牛頓在《自然哲學的數學原理》中初步描述了他的流數理論。同一時期,萊布尼茲通過研究笛卡爾和帕斯卡,發現了他的新微積分。

0.3 第二次數學危機與柯西的解決方案

0.4 黎曼積分與勒貝格積分

0.5 計算方法與混沌系統

第一章 導數

1.1 極限基礎

1.2 導數定義及運算法則

導數(英語:derivative)是微積分學中的一個概念。函數在某一點的導數是指這個函數在這一點附近的變化率。

1.3 一些求導技巧

1.4 微分中值定理

1.5 洛必達法則、泰勒公式

1.6 導數的應用

第二章 極限

2.1 無窮是什麼——Cauchy的ε語言

2.2 數列極限的定義、性質與證明技巧

2.3 函數極限與連續函數

*2.4 實數完備性公理

第三章 不定積分

3.1 不定積分的概念——反導數

3.2 不定積分的運算法則與換元法

3.3 一些函數的不定積分

3.4 不定積分的高級技巧

3.5 初等不可積函數

第四章 定積分

第五章 微分方程

第六章 多元函數

第七章 多元函數微分學

第八章 重積分

第九章 曲線積分與曲面積分

第十章 無窮級數

參見

參考文獻

  1. 1.0 1.1 1.2 D.J.斯特羅伊克.數學簡史(第四版)[M].胡濱 譯.北京:高等教育出版社,2018